On the role of mechanosensitive mechanisms eliciting reactive hyperemia.

نویسندگان

  • Akos Koller
  • Zsolt Bagi
چکیده

We hypothesized that changes in hemodynamic forces such as pressure (P) and flow (F) contribute importantly to the development of reactive hyperemia. To exclude the effects of vivo factors, isolated rat skeletal muscle arterioles ( approximately 130 microm) were utilized. We found that changes in P or P + F following occlusions elicited reactive dilations (RD). The peak of RD (up to approximately 45 microm), but not the duration of RD, increased to changes in P (80 to 10, then back to 80 mmHg) as a function of the length of occlusions (30, 60, and 120 s). However, changes in P + F (80-10 -80 mmHg + 25-0-25 microl/min) increased both the peak and duration of RD (from approximately 25 to 90 s) with longer occlusions. When only P changed, inhibition of nitric oxide synthesis or endothelium removal (E-) reduced only the peak of RD, whereas when P + F were changed, both the peak and duration of RD became reduced. Inhibition of stretch-activated cation channels by gadolinium reduced the peak but enhanced the duration of RD (both to P or P + F) that was unaffected by N(G)-nitro-l-arginine methyl ester (l-NAME) or by E-. When only P changed, inhibition of tyrosine kinases by genistein reduced peak RD but did not affect the RD duration. However, when P + F changed, genistein reduced both the peak and the duration of RD, additional l-NAME reduced the peak RD, but did not affect the duration of RD. Thus in isolated arterioles an RD resembling the characteristics of reactive hyperemia can be generated that is elicited by deformation, stretch, pressure, and flow/shear stress-sensitive mechanisms and is, in part, mediated by nitric oxide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide and H2O2 contribute to reactive dilation of isolated coronary arterioles.

The role of metabolic factors derived from cardiac muscle in the development of reactive hyperemia after brief occlusions of the coronary circulation seems to be well established. However, the contribution of occlusion-induced changes in hemodynamic forces to eliciting reactive hyperemia is less known. We hypothesized that in isolated coronary arterioles changes in intraluminal pressure and flo...

متن کامل

Inhibition of vascular ATP-sensitive K+ channels does not affect reactive hyperemia in human forearm.

The extent to which ATP-sensitive K(+) channels contribute to reactive hyperemia in humans is unresolved. We examined the role of ATP-sensitive K(+) channels in regulating reactive hyperemia induced by 5 min of forearm ischemia. Thirty-one healthy subjects had forearm blood flow measured with venous occlusion plethysmography. Reactive hyperemia could be reproducibly induced (n = 9). The contrib...

متن کامل

Nitric oxide and vasodilation in human limbs.

Both the skeletal muscle and skin of humans possess remarkable abilities to vasodilate. Marked vasodilation can be seen in these vascular beds in response to a variety of common physiological stimuli. These stimuli include reactive hyperemia (skin and muscle), exercise hyperemia (muscle), mental stress (muscle), and whole body heating (skin). The physiological mechanisms that cause vasodilation...

متن کامل

Heterogenous nature of flow-mediated dilatation in human conduit arteries in vivo: relevance to endothelial dysfunction in hypercholesterolemia.

Flow-mediated dilatation (FMD) of conduit arteries is dependent on an intact endothelium, although the mechanisms are not fully understood. Using high-resolution ultrasound, we examined the role of endothelial mediators in radial artery dilatation in response to transient (short period of reactive hyperemia) and sustained (prolonged period of reactive hyperemia, hand warming, or an incremental ...

متن کامل

Microvascular sites and mechanisms responsible for reactive hyperemia in the coronary circulation of the beating canine heart.

Our aim was to elucidate the site and mechanism responsible for reactive hyperemia in coronary circulation. In in vivo beating canine hearts, microvessels of the left anterior descending coronary artery (LAD) were observed through a microscope equipped with a floating objective. Flow velocity of the LAD was measured with a suction-type Doppler probe. The LAD was occluded for 20 or 30 seconds an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 283 6  شماره 

صفحات  -

تاریخ انتشار 2002